Mo $K\alpha$ radiation

 $0.26 \times 0.22 \times 0.20 \text{ mm}$

 $\mu = 18.72 \text{ mm}^-$

T = 298 K

Z = 1

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(benzyltrimethylammonium) di-µbromido-bis[dibromidomercurate(II)]

Lei Jin

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: jinlei8812@163.com

Received 29 November 2011; accepted 27 December 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.052; wR factor = 0.131; data-to-parameter ratio = 20.6.

In the crystal structure of the title compound, $(C_{10}H_{16}N)_2$ -[Hg₂Br₆], the condensed anion consists of two edge-sharing HgBr₄ tetrahedra and is situated on a centre of symmetry. The anions are linked to the cations through weak $C-H\cdots$ Br interactions.

Related literature

For related structures, see: Jin & Liu (2011); Nockemann & Meyer (2002).

Experimental

Crystal data $(C_{10}H_{16}N)_2[Hg_2Br_6]$ $M_r = 1181.06$

Triclinic, $P\overline{1}$ a = 9.0542 (11) Å

b = 9.7287 (9) Å	
c = 9.894 (1) Å	
$\alpha = 80.78 \ (1)^{\circ}$	
$\beta = 71.02 \ (1)^{\circ}$	
$\gamma = 62.39 \ (1)^{\circ}$	
$V = 730.24 (13) \text{ Å}^3$	

Data collection

Rigaku Mercury2 diffractometer	6877 measured reflections
Absorption correction: multi-scan	2872 independent reflections
(CrystalClear; Rigaku, 2005)	2166 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.011, \ T_{\max} = 0.024$	$R_{\rm int} = 0.048$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 139 parameters $wR(F^2) = 0.131$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.97$ e Å $^{-3}$ 2862 reflections $\Delta \rho_{min} = -1.56$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3−H3C···Br1	0.96	2.86	3.776 (7)	160
$C2-H2B\cdots Br2^{i}$	0.96	2.87	3.743 (7)	151
6 (i)	1.1 1.1	1.1		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author thanks Ordered Matter Science Research Centre, Southeast University, for support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5212).

References

Jin, L. & Liu, N. (2011). Acta Cryst. E67, m1586.
Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, m529–m530.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2012). E68, m123 [doi:10.1107/S1600536811055887]

Bis(benzyltrimethylammonium) di-*µ*-bromido-bis[dibromidomercurate(II)]

L. Jin

Comment

Recently much attention has been devoted to simple molecular–ionic compounds containing organic ammonium cations and anions due to the tunability of their special structural features and their ferroelectric-dielectric properties (Nockemann & Meyer, 2002; Jin *et al.*, 2011). Herewith we present the crystal structure of the title compound.

The title compound, $(C_{10}H_{16}N^+)_2 \cdot Hg_2Br_6^{2-}$, crystallizes in the triclinic P-1 space group (Fig. 1). The rigid $[Hg_2Br_6]^{2-}$ anion situtaed on inversion center consists of two distorted tetrahedrons sharing one common edge. The terminal Hg—Br bond lengths are 2.4910 (10) and 2.4696 (8) Å, respectively, and the Br—Hg—Br bond angles are in the range 107.16 (3)° - 122.27 (3)°. The bridging Hg—Br bond lengths are 2.6039 (8) and 2.8320 (8) Å, respectively, and the bond angles of Br—Hg—Br are 102.21 (3)° - 106.41 (3)°.

In the crystal, weak intermolecular C—H···Br hydrogen bonds (Table 1) link anion and two cations into a neutral cluster (Fig. 1).

Experimental

In room temperature benzyltrimethylammoniumchlorine (10 mmol, 1.86 g) in 20 ml water, then a water solution with HgBr₂ (5 mmol, 1.36 g) was dropped slowly into the previous solution with properly sirring. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after one week in air with some colorless solid blocks appeared after days.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent ($\epsilon = C/(T-T_0)$), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement

H atoms were placed in calculated positions(C—H = 0.93Å for Csp^2 atoms and C—H = 0.96Å and 0.97Å for Csp^3 atoms), assigned fixed U_{iso} values [$U_{iso} = 1.2Ueq(Csp^2/N)$ and 1.5 $Ueq(Csp^3)$] and allowed to ride.

Figures

Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (A) 1-x, 1-y, 1-z]. Dashed lines denote C—H…Br interactions.

Bis(benzyltrimethylammonium) di-µ-bromido-bis[dibromidomercurate(II)]

Crystal data

$(C_{10}H_{16}N)_{2}[Hg_{2}Br_{6}]$	Z = 1
$M_r = 1181.06$	F(000) = 536
Triclinic, <i>P</i> T	$D_{\rm x} = 2.686 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.0542 (11) Å	Cell parameters from 6235 reflections
b = 9.7287 (9) Å	$\theta = 6.4 - 26^{\circ}$
c = 9.894 (1) Å	$\mu = 18.72 \text{ mm}^{-1}$
$\alpha = 80.78 \ (1)^{\circ}$	T = 298 K
$\beta = 71.02 \ (1)^{\circ}$	Block, colourless
$\gamma = 62.39 (1)^{\circ}$	$0.26 \times 0.22 \times 0.20 \text{ mm}$
$V = 730.24 (13) \text{ Å}^3$	

Data collection

Rigaku Mercury2 diffractometer	2872 independent reflections
Radiation source: fine-focus sealed tube	2166 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.048$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
CCD_Profile_fitting scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -11 \rightarrow 11$
$T_{\min} = 0.011, \ T_{\max} = 0.024$	$l = -12 \rightarrow 12$
6877 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.052$
$wR(F^2) = 0.131$
<i>S</i> = 1.07
2862 reflections
139 parameters
0 restraints

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0524P)^2 + 4.9831P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{max} = 0.97 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Br1 0.0764(2)0.58630(9) 0.70394 (8) 0.72319 (8) Br2 0.21880 (9) 0.50624 (8) 0.89596 (8) 0.0674 (2) Br3 0.0655(2) 0.30736 (8) 0.68625 (8) 0.47194 (7) C1 0.9659 (8) 0.6586(7)0.3266(8)0.064(2)H1A 0.095* 0.9220 0.6131 0.4143 H1B 0.095* 1.0736 0.6560 0.3256 H1C 0.9853 0.6010 0.2473 0.095* C2 0.6710(7) 0.3234 (7) 0.8258 (7) 0.062(2)H2A 0.4096 0.094* 0.6334 0.7749 H2B 0.6846 0.7740 0.2423 0.094* H2C 0.094* 0.5859 0.9319 0.3234 C3 0.8111 (8) 0.9073 (7) 0.4372 (7) 0.061(2)H3A 0.092* 0.7292 1.0135 0.4305 H3B 0.9198 0.9029 0.4358 0.092* H3C 0.5248 0.092* 0.7667 0.8621 C4 0.8986 (6) 0.8952 (6) 0.1764 (6) 0.0449 (16) H4A 0.9305 0.0987 0.054* 0.8282 H4B 0.8017 0.9924 0.054* 0.1643 C5 1.0480(6) 0.9265 (6) 0.1642 (5) 0.0413 (16) C6 1.2150 (8) 0.8236 (6) 0.1077 (6) 0.050(2) H6 1.2390 0.7280 0.0772 0.059* C7 1.3495 (8) 0.8583 (8) 0.0949 (7) 0.060(2) H7 1.4641 0.7856 0.0583 0.072* C8 1.0004 (9) 1.3137(7) 0.1363 (6) 0.065(2)H8 1.4047 1.0236 0.1292 0.078* C9 1.1445 (7) 1.1097 (7) 0.1885 (7) 0.058 (2) H9 1.1201 1.2079 0.2134 0.069* C10 1.0142 (7) 1.0708 (7) 0.2027 (7) 0.0511 (19) H10 0.8994 1.1431 0.2392 0.061* Hg1 0.45270(3) 0.53868 (3) 0.69985 (3) 0.05152(7) N1 0.8382 (5) 0.8208 (5) 0.3156 (5) 0.0421 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0961 (3)	0.0828 (3)	0.0710 (4)	-0.0584 (3)	-0.0195 (3)	-0.0032 (3)
Br2	0.0621 (3)	0.0625 (3)	0.0664 (4)	-0.0297 (2)	0.0040 (3)	-0.0121 (3)
Br3	0.0604 (3)	0.0597 (4)	0.0624 (3)	-0.0061 (3)	-0.0252 (3)	-0.0135 (3)
C1	0.064 (3)	0.052 (3)	0.074 (4)	-0.023 (3)	-0.029 (3)	0.011 (3)
C2	0.053 (2)	0.075 (3)	0.073 (4)	-0.037 (2)	-0.024 (3)	0.005 (3)
C3	0.068 (3)	0.073 (3)	0.049 (3)	-0.038 (2)	-0.005 (3)	-0.018 (3)
C4	0.058 (2)	0.042 (2)	0.048 (3)	-0.0279 (18)	-0.029 (2)	0.013 (2)
C5	0.041 (2)	0.049 (3)	0.031 (2)	-0.015 (2)	-0.0154 (19)	0.005 (2)
C6	0.065 (3)	0.034 (3)	0.031 (3)	-0.014 (2)	-0.004 (2)	0.001 (2)
C7	0.042 (3)	0.072 (4)	0.045 (3)	-0.013 (3)	-0.009 (3)	0.010 (3)
C8	0.046 (2)	0.119 (5)	0.041 (3)	-0.042 (3)	-0.020 (2)	0.011 (3)
C9	0.060 (3)	0.067 (3)	0.053 (3)	-0.037 (2)	-0.014 (3)	0.006 (3)
C10	0.038 (2)	0.053 (3)	0.056 (3)	-0.023 (2)	0.002 (2)	-0.008 (2)
Hg1	0.05128 (9)	0.05610 (11)	0.04991 (12)	-0.02925 (7)	-0.00626 (9)	-0.00723 (9)
N1	0.0451 (17)	0.041 (2)	0.048 (2)	-0.0216 (14)	-0.0197 (16)	-0.0010 (17)

Geometric parameters (Å, °)

Br1—Hg1	2.4909 (10)	C4—N1	1.509 (7)
Br2—Hg1	2.4698 (8)	C4—H4A	0.9700
Br3—Hg1 ⁱ	2.6039 (8)	C4—H4B	0.9700
Br3—Hg1	2.8318 (8)	C5—C6	1.351 (7)
C1—N1	1.475 (7)	C5—C10	1.381 (9)
C1—H1A	0.9600	C6—C7	1.371 (11)
C1—H1B	0.9600	С6—Н6	0.9300
C1—H1C	0.9600	С7—С8	1.366 (11)
C2—N1	1.468 (8)	С7—Н7	0.9300
C2—H2A	0.9600	C8—C9	1.377 (7)
C2—H2B	0.9600	С8—Н8	0.9300
С2—Н2С	0.9600	C9—C10	1.359 (10)
C3—N1	1.469 (8)	С9—Н9	0.9300
С3—НЗА	0.9600	C10—H10	0.9300
С3—Н3В	0.9600	Hg1—Br1	2.4909 (10)
С3—НЗС	0.9600	Hg1—Br3 ⁱ	2.6039 (8)
C4—C5	1.484 (9)		
Hg1 ⁱ —Br3—Hg1	91.14 (2)	С5—С6—Н6	119.5
N1—C1—H1A	109.5	С7—С6—Н6	119.5
N1—C1—H1B	109.5	C8—C7—C6	119.4 (5)
H1A—C1—H1B	109.5	С8—С7—Н7	120.3
N1—C1—H1C	109.5	С6—С7—Н7	120.3
H1A—C1—H1C	109.5	С7—С8—С9	120.8 (7)
H1B—C1—H1C	109.5	С7—С8—Н8	119.6
N1—C2—H2A	109.5	С9—С8—Н8	119.6
N1—C2—H2B	109.5	C10—C9—C8	118.4 (7)

H2A—C2—H2B	109.5	С10—С9—Н9	120.8
N1—C2—H2C	109.5	С8—С9—Н9	120.8
H2A—C2—H2C	109.5	C9—C10—C5	121.6 (5)
H2B—C2—H2C	109.5	С9—С10—Н10	119.2
N1—C3—H3A	109.5	С5—С10—Н10	119.2
N1—C3—H3B	109.5	Br2—Hg1—Br1	122.26 (3)
НЗА—СЗ—НЗВ	109.5	Br2—Hg1—Br1	122.26 (3)
N1—C3—H3C	109.5	Br2—Hg1—Br3 ⁱ	122.24 (3)
НЗА—СЗ—НЗС	109.5	Br1—Hg1—Br3 ⁱ	107.18 (3)
НЗВ—СЗ—НЗС	109.5	Br1—Hg1—Br3 ⁱ	107.18 (3)
C5—C4—N1	115.1 (5)	Br2—Hg1—Br3	106.40 (3)
C5—C4—H4A	108.5	Br1—Hg1—Br3	102.23 (3)
N1—C4—H4A	108.5	Br1—Hg1—Br3	102.23 (3)
C5—C4—H4B	108.5	Br3 ⁱ —Hg1—Br3	88.86 (2)
N1—C4—H4B	108.5	C2—N1—C3	108.1 (4)
H4A—C4—H4B	107.5	C2—N1—C1	109.7 (5)
C6—C5—C10	118.8 (6)	C3—N1—C1	108.7 (5)
C6—C5—C4	122.6 (6)	C2—N1—C4	108.5 (5)
C10—C5—C4	118.4 (4)	C3—N1—C4	110.4 (5)
C5—C6—C7	121.0 (6)	C1—N1—C4	111.4 (4)
N1—C4—C5—C6	91.4 (6)	C6—C5—C10—C9	-1.7 (9)
N1-C4-C5-C10	-93.3 (6)	C4—C5—C10—C9	-177.2 (6)
C10—C5—C6—C7	3.1 (9)	Hg1 ⁱ —Br3—Hg1—Br2	-123.39 (3)
C4—C5—C6—C7	178.3 (5)	Hg1 ⁱ —Br3—Hg1—Br1	107.33 (3)
C5—C6—C7—C8	-1.8 (9)	Hg1 ⁱ —Br3—Hg1—Br1	107.33 (3)
C6—C7—C8—C9	-1.1 (10)	C5—C4—N1—C2	168.8 (4)
C7—C8—C9—C10	2.4 (10)	C5—C4—N1—C3	50.6 (5)
C8—C9—C10—C5	-1.0 (10)	C5—C4—N1—C1	-70.3 (7)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C3—H3C···Br1	0.96	2.86	3.776 (7)	160
C2—H2B···Br2 ⁱ	0.96	2.87	3.743 (7)	151
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

